

APPLICATIONS

Lys-C Protease for Improvements in Peptide Mapping Workflows

M. Christina Malinao and Brian Rivera
Phenomenex, Inc., 411 Madrid Ave., Torrance, CA 90501, USA

Overview

Peptide mapping is a ubiquitous method within protein characterization. The general workflow includes the isolation of a protein, followed by insolution digest using a serine protease to yield peptides, which are subsequently separated by LC and analyzed by UV and/or MS techniques. Because of its specificity and the general size of peptides generated, trypsin is most commonly However, trypsin can have missed cleavages, particularly with lysine. Therefore, a common approach is to supplement the digestion with Lys-C, another serine protease. application note, we demonstrate the sequence coverage results for NIST mAb digestion between standard in-solution trypsin when compared to a trypsin/Lys-C digest.

The number of unique peptides yielded from the trypsin-only digestion was 267, when compared to the trypsin/Lys-C digestion with 288 (full peptide maps shown in **Figure 1**). Importantly, the DMIF peptide, as shown in **Figure 2**, is recovered significantly more with the trypsin/Lys-C digestion. This result allowed for the DMIF peptide to be identified by the information-dependent acquisition (IDA) MS/MS experiment. As such, sequence coverage of 91.6% for the heavy chain for the trypsin/Lys-C digestion, whereas trypsin-only yielded an 85.8% sequence coverage.

In summary, peptide mapping workflows should be optimized to improve digestion efficiency and reproducibility, and one strategy is to use the serine protease Lys-C to overcome any missed cleavages or digestion inefficiencies.

Digestion Procedure:

Step	Details
Denaturation	To sample, add 1:1 (v:v) of 5 M Guanidine
Reduction	1:10 (v:v) 200 mM DTT:Protein
	Incubate at 57 °C for 30 min, shaking at 1000 rpm
Alkylation	1:2 (v:v) 400 mM iodoacetamide (IAM): DTT
	Incubate in the dark 45 min Quench, 1:2 (v:v) 200 mM DTT: IAM
Buffer Exchange	100 mM Ammonium Bicarbonate, overnight
Digestion	1:20 (w/w) Trypsin:Sample or 1:20 (w/w) Trypsin/Lys-C:Sample
	Incubate 37 °C for 6 h, shaking at 1000 rpm
Reaction Quench	Formic acid
	SpeedVac to dryness, resuspend in mobile phase prior to analysis

LC Conditions

Column: bioZen™ 2.6 µm Peptide XB-C18

Dimension: 150 x 2.1 mm **Part No.:** 00F-4768-AN

Recommended Guard: SecurityGuard™ ULTRA

Guard Cartridge Part No.: AJ0-9806
Guard Holder Part No.: AJ0-9000

Mobile Phase: A: 0.1 % Formic Acid in Water

B: 0.1 % Formic Acid in Acetonitrile

Flow Rate: 0.3 mL/min

Gradient: 1-50% B in 50 minutes

Temperature: 40 °C

Detector: Q-TOF (SCIEX® X500B) **Sample:** Digested NIST mAb

Figure 1. Comparison of TICs- Trypsin vs Trypsin/Lys-C

Figure 2. XIC Comparison, DMIF Peptide

Comparison of Sequence Coverage

Trypsin/Lys-C Digested NIST mAb

Heavy Chain Sequence Coverage 91.6%

QVTLRESGPALVKPTQTLTLTCTFSGFSLSTAGMSVG
WIRQPPGKALEWLADIWWDDKKHYNPSLKDRLTISKD
TSKNQVVLKVTNMDPADTATYYCARDMIFNFYFDVWG
QGTTVTVSSASTKGPSVFPLAPSSKSTSGGTAALGCL
VKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSL
SSVVTVPSSSLGTQTYICNVNHKPSNTKVDKRVEPKS
CDKTHTCPPCPAPELLGGPSVFLFPKPKDTLMISRT
PEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPRE
EQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPA
PIEKTISKAKGQPREPQVYTLPPSREEMTKNQVSLTC
LVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSF
FLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSL
SLSPGK

Trypsin Digested NIST mAb

Heavy Chain Sequence Coverage 85.8%

QVTLRESGPALVKPTQTLTLTCTFSGFSLSTAGMSVG

WIRQPPGKALEWLADIWWDDKKHYNPSLKDRLTISKD
TSKNQVVLKVTNMDPADTATYYCARDMIFNFYFDVWG
QGTTVTVSSASTKGPSVFPLAPSSKSTSGGTAALGCL
VKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSL
SSVVTVPSSSLGTQTYICNVNHKPSNTKVDKRVEPKS
CDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRT
PEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPRE
EQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPA
PIEKTISKAKGQPREPQVYTLPPSREEMTKNQVSLTC
LVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSF
FLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSL
SLSPGK

Phenomenex ...breaking with tradition with traditio

APPLICATIONS

Need a different column size or sample preparation format?

No problem! We have a majority of our available dimensions up on www.phenomenex.com, but if you can't find what you need right away, our super helpful Technical Specialists can guide you to the solution via our online chat portal www.phenomenex.com/LiveChat.

Terms and Conditions

Subject to Phenomenex Standard Terms and Conditions, which may be viewed at www.phenomenex.com/TermsAndConditions

Trademarks

bioZen and SecurityGuard are trademarks of Phenomenex. FOR RESEARCH USE ONLY. Not for use in clinical diagnostic procedures

© 2020 Phenomenex, Inc. All rights reserved.